Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Epidemiol Infect ; 151: e21, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2221729

ABSTRACT

SARS-CoV-2 has severely affected capacity in the National Health Service (NHS), and waiting lists are markedly increasing due to downtime of up to 50 min between patient consultations/procedures, to reduce the risk of infection. Ventilation accelerates this air cleaning, but retroactively installing built-in mechanical ventilation is often cost-prohibitive. We investigated the effect of using portable air cleaners (PAC), a low-energy and low-cost alternative, to reduce the concentration of aerosols in typical patient consultation/procedure environments. The experimental setup consisted of an aerosol generator, which mimicked the subject affected by SARS-CoV-19, and an aerosol detector, representing a subject who could potentially contract SARS-CoV-19. Experiments of aerosol dispersion and clearing were undertaken in situ in a variety of rooms with two different types of PAC in various combinations and positions. Correct use of PAC can reduce the clearance half-life of aerosols by 82% compared to the same indoor-environment without any ventilation, and at a broadly equivalent rate to built-in mechanical ventilation. In addition, the highest level of aerosol concentration measured when using PAC remains at least 46% lower than that when no mitigation is used, even if the PAC's operation is impeded due to placement under a table. The use of PAC leads to significant reductions in the level of aerosol concentration, associated with transmission of droplet-based airborne diseases. This could enable NHS departments to reduce the downtime between consultations/procedures.


Subject(s)
Air Filters , COVID-19 , Humans , SARS-CoV-2 , State Medicine , Respiratory Aerosols and Droplets , Hospitals
2.
Sci Rep ; 11(1): 24183, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585792

ABSTRACT

COVID-19 has restricted singing in communal worship. We sought to understand variations in droplet transmission and the impact of wearing face masks. Using rapid laser planar imaging, we measured droplets while participants exhaled, said 'hello' or 'snake', sang a note or 'Happy Birthday', with and without surgical face masks. We measured mean velocity magnitude (MVM), time averaged droplet number (TADN) and maximum droplet number (MDN). Multilevel regression models were used. In 20 participants, sound intensity was 71 dB for speaking and 85 dB for singing (p < 0.001). MVM was similar for all tasks with no clear hierarchy between vocal tasks or people and > 85% reduction wearing face masks. Droplet transmission varied widely, particularly for singing. Masks decreased TADN by 99% (p < 0.001) and MDN by 98% (p < 0.001) for singing and 86-97% for other tasks. Masks reduced variance by up to 48%. When wearing a mask, neither singing task transmitted more droplets than exhaling. In conclusion, wide variation exists for droplet production. This significantly reduced when wearing face masks. Singing during religious worship wearing a face mask appears as safe as exhaling or talking. This has implications for UK public health guidance during the COVID-19 pandemic.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Face , Masks , Singing/physiology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross-Sectional Studies , Exhalation/physiology , Female , Humans , Male , Pandemics/prevention & control , Risk Factors , SARS-CoV-2/physiology , Virus Shedding/physiology
3.
J Med Virol ; 93(4): 2406-2419, 2021 04.
Article in English | MEDLINE | ID: covidwho-1227754

ABSTRACT

The analyses of 2325 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes revealed 107, 162, and 65 nucleotide substitutions in the coding region of SARS-CoV-2 from the three continents America, Europe, and Asia, respectively. Of these nucleotide substitutions 58, 94, and 37 were nonsynonymous types mostly present in the Nsp2, Nsp3, Spike, and ORF9. A continent-specific phylogram analyses clustered the SARS-CoV-2 in the different group based on the frequency of nucleotide substitutions. Detailed analyses about the continent-specific amino acid changes and their effectiveness by SNAP2 software was investigated. We found 11 common nonsynonymous mutations; among them, two novel effective mutations were identified in ORF9 (S194L and S202N). Intriguingly, ORF9 encodes nucleocapsid phosphoprotein possessing many effective mutations across continents and could be a potential candidate after the spike protein for studying the role of mutation in viral assembly and pathogenesis. Among the two forms of certain frequent mutation, one form is more prevalent in Europe continents (Nsp12:L314, Nsp13:P504, Nsp13:Y541, Spike:G614, and ORF8:L84) while other forms are more prevalent in American (Nsp12:P314, Nsp13:L504, Nsp13:C541, Spike:D614, and ORF8:L84) and Asian continents (Spike:D614), indicating the spatial and temporal dynamics of SARS-CoV-2. We identified highly conserved 38 regions and among these regions, 11 siRNAs were predicted on stringent criteria that can be used to suppress the expression of viral genes and the corresponding reduction of human viral infections. The present investigation provides information on different mutations and will pave the way for differentiating strains based on virulence and their use in the development of better antiviral therapy.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Asia/epidemiology , COVID-19/epidemiology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Papain-Like Proteases/genetics , Europe/epidemiology , Gene Silencing , Genes, Viral , Genome, Viral , Humans , Open Reading Frames , Phosphoproteins/genetics , Phylogeny , RNA, Small Interfering/genetics , SARS-CoV-2/classification , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , COVID-19 Drug Treatment
4.
Non-conventional in English | WHO COVID | ID: covidwho-276195

ABSTRACT

This study presents a comprehensive phylogenetic analysis of SARS-CoV2 isolates to understand discrete mutations that are occurring between patient samples. The analysis unravel various amino acid mutations in the viral proteins which may provide an explanation for varying treatment efficacies of different inhibitory drugs and a future direction towards a combinatorial treatment therapies based on the kind of mutation in the viral genome.

SELECTION OF CITATIONS
SEARCH DETAIL